If it's not what You are looking for type in the equation solver your own equation and let us solve it.
18^2=a^2+a^2
We move all terms to the left:
18^2-(a^2+a^2)=0
We add all the numbers together, and all the variables
-(a^2+a^2)+324=0
We get rid of parentheses
-a^2-a^2+324=0
We add all the numbers together, and all the variables
-2a^2+324=0
a = -2; b = 0; c = +324;
Δ = b2-4ac
Δ = 02-4·(-2)·324
Δ = 2592
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2592}=\sqrt{1296*2}=\sqrt{1296}*\sqrt{2}=36\sqrt{2}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-36\sqrt{2}}{2*-2}=\frac{0-36\sqrt{2}}{-4} =-\frac{36\sqrt{2}}{-4} =-\frac{9\sqrt{2}}{-1} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+36\sqrt{2}}{2*-2}=\frac{0+36\sqrt{2}}{-4} =\frac{36\sqrt{2}}{-4} =\frac{9\sqrt{2}}{-1} $
| 3x²=20 | | 10·x+8=48 | | -1.2=6,3+v/3 | | -70y=0 | | 4/12=a/12 | | 18-3y=y | | x=5+0.01 | | 5x–4–x=2x-1 | | 3g+7=6 | | 6c-13=12 | | 5z+6=66 | | 7r+10=52 | | |2x+40|=28 | | 7r+10=15 | | 5r+3=11 | | 6l+9=27 | | 7u-11=38 | | x*23=35 | | x/23=35 | | 9x-6=3x+60 | | 4*3x+3x-7=8 | | 5(x−2)=15 | | 2x+2¹-x=3 | | 3·(5x-5)=75 | | 7·(6x-4)=350 | | 4x=-187 | | H=-t2+10t+24 | | 3(0.5x+12)=87 | | 4x-5*2^x+4=0 | | 24=0.5*2x+4 | | f(20)=23 | | .n+4=12 |